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Recap

Last time we discussed the following topics:

Properties of prime numbers.

Techniques for factoring positive integers.

Techniques for creating lists of primes.

Approximating the number of primes up to x .
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Division Algorithm

Theorem (Division Algorithm)

Let a be an integer and b a positive integer. Then there exist unique
integers q, r with 0 ≤ r < b such that a = bq + r .

In the previous theorem, q is the integer part of a/b and r is the remainder.
We will use the notation a % b to denote the remainder of a upon division
by b. Arithmetic with remainders is an important tool in number theory.
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Remainder Arithmetic

Example

We calculate that 26 % 10 = 6 and 39 % 10 = 9. Notice that

(26 + 39) % 10 = 65 % 10 = 5,

(6 + 9) % 10 = 15 % 10 = 5,

and that
(26× 39) % 10 = 1014 % 10 = 4,

(6× 9) % 10 = 54 % 10 = 4.

This is not a coincidence.
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Congruence Mod m

We can formally state a result about how remainders behave with addition
and multiplication once we define the notion of congruence.

Definition (Congruence Mod m)

For integers a, b and a positive integer m, we say that

a ≡ b (mod m)

(a is congruent to b mod m) if

a % m = b % m

or equivalently b = a+ qm for some integer q

or equivalently m | a− b (m divides a− b).

The first condition implies that a is congruent to its remainder mod m.
The last condition is usually the easiest to calculate with.
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Congruence Mod m

Example

17 ≡ 35 (mod 6) because 6 | 17− 35 = −18

−2 ≡ 6 (mod 4) because 4 | −2− 6 = 8

2 ̸≡ 7 (mod 9) because 9 ∤ 2− 7 = −5.

Exercise

Determine whether the following statements are true.

16 ≡ 51 (mod 5)

21 ≡ 0 (mod 7)

4 ≡ 12 (mod 16)

−4 ≡ 12 (mod 16)
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Congruence Class Mod m

Definition

Fix a positive integer m and an integer a. The congruence class of a mod
m, sometimes written [a], is the set of integers congruent to a mod m.

Example

The congruence class of 17 mod 5 is the infinite set

{. . . ,−13,−8,−3, 2, 7, 12, 17, 22, . . . }.

Exercise

Determine whether the following equalities are true:

[−4] = [16] (mod 5)

[2] = [14] (mod 7).
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Modular Arithmetic

Now we state the result alluded to earlier about addition and
multiplication of remainders.

Proposition

Fix integers a, b, c and a positive integer m. Suppose a ≡ b (mod m).
Then a+ c ≡ b + c (mod m) and ac ≡ bc (mod m).
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Modular Arithmetic

Proof.

If a ≡ b (mod m), then a = qm + b for some integer q. Then

a+ c = (qm + b) + c = qm + (b + c)

and
ac = (qm + b)c = (qc)m + bc,

implying that a+ c ≡ b + c (mod m) and ac ≡ bc (mod m) as
desired.
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Modular Arithmetic

We have just seen that two integers behave exactly the same with
addition and subtraction mod m if they are congruent mod m. This allows
us to define arithmetic on congruence classes via the rule
[a] + [b] = [a+ b] and [a][b] = [ab].

Example

Since [26] = [6] and [39] = [9] mod 10, we can safely assume that

[26] + [39] = [6] + [9] = [6 + 9] = [15] = [5]

and
[26][39] = [6][9] = [6× 9] = [54] = [4].
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Modular Arithmetic

Example

Let’s calculate (20406× 987654321) % 100.

Notice that 20406 ≡ 6 (mod 100) and 987654321 ≡ 21 (mod 100).

Therefore 20406× 987654321 ≡ 6× 21 ≡ 126 ≡ 26 (mod 100).

Since 0 ≤ 26 < 100, the remainder is 26.

Example

Let’s calculate 440404 % 17

Notice that 42 ≡ 16 ≡ −1 (mod 17).

Therefore 440404 ≡ 1620202 ≡ (−1)20202 ≡ 1 (mod 17).

Since 0 ≤ 1 < 17, the remainder is 1.
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Modular Arithmetic

Exercise

Calculate 7200 % 48.

Exercise

Calculate 11301 % 1332.

Exercise

Calculate 3k % 10 , for 0 ≤ k ≤ 12. What do you notice?
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Modular Arithmetic

Example

Let’s prove that 23k + 1 is composite for any integer k ≥ 1. Indeed,

23k + 1 ≡ (2k)3 + 1 ≡ (−1)3 + 1 ≡ 0 (mod 2k + 1),

which implies that 23k + 1 always has 2k + 1 as a factor.

Exercise

Show more generally that if m ≥ 1 has any odd prime factor, that 2m + 1
is composite.

Exercise

Show that if m is composite, then 2m − 1 is composite.
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Fermat Numbers

If 2m +1 is prime, then m has no odd prime factors, i.e., m is a power
of 2.

A Fermat number is a number of the form Fm = 22
m
+ 1.

The Fermat numbers F0 through F4 are prime, but F5 through F32
are not.

It is unknown whether there are infinitely many Fermat primes.
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Mersenne Numbers

If 2m − 1 is prime, then m is prime.

A Mersenne number is a number of the form Mp = 2p − 1 for a prime
p.

There are only 51 known primes p such that Mp is also prime.

Every prime p up to about 67 million has been tested to check if Mp

is prime.

The largest known prime number is the Mersenne prime 282589933 − 1.

It is unknown whether there are infinitely many Mersenne primes.
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Fermat’s Little Theorem

Theorem (Fermat’s Little Theorem)

Suppose p is prime and a is an integer not divisible by p. Then ap−1 ≡ 1
(mod p).

Example

We have 26 ≡ 64 ≡ 1 (mod 7), since 7 is prime and 7 ∤ 2 (2 does not
divide 7).

We have 28 ≡ 256 ≡ 4 ̸≡ 1 (mod 9), and since 9 ∤ 2, this proves that
9 is composite.
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Fermat Test

The Fermat test for primality of m works as follows:

Choose an integer a (usually between 2 and n − 1).

If am−1 ̸≡ 1 (mod m), then m is definitely composite.

If am−1 ≡ 1 (mod m), then m is “probably prime”.

Example

Recall from last time that 108 + 1 = 17× 5882353. Using a computer, we
could calculate

210
8+1 ≡ 65536 (mod 108 + 1),

which immediately shows that 108 + 1 is not prime. On the other hand,

25882352 ≡ 1 (mod 5882353),

which suggests that 5882353 is prime.
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Fermat Pseudoprimes

Unfortunately, am−1 ≡ 1 (mod m) may hold even if m is composite in
some cases. The only guarantee is that if a and m share a prime factor q,
then am−1 ̸≡ 1 (mod m).

Definition (Fermat Pseudoprime / Witness)

Fix a composite integer m.

m is said to be a Fermat pseudoprime base a if am−1 ≡ 1 (mod m).

An integer a is said to be a Fermat witness to the compositeness of m
if am−1 ̸≡ 1 (mod m) and a is not divisible by m.

Definition (Carmichael Number)

A composite number m is said to be a Carmichael number if it is a Fermat
pseudoprime base a for every integer a coprime to m (sharing no prime
factors with m).

Owen Sharpe (University of Waterloo) Math Circles: Primality Testing and Integer FactorizationMarch 27, 2024 18 / 28



Korselt’s Criterion

We say that an integer is squarefree if its prime factorization contains no
repeated factors (higher powers of primes). Korselt proved that a
composite integer m is a Carmichael number if and only if m is squarefree
and for each prime factor p of m, p − 1 | m − 1.

Exercise

Verify that 561 is a Carmichael number.
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Fermat Test

The existence of Carmichael numbers makes the Fermat test an
unsatisfactory test. The smallest witness to a Carmichael number m would
be the smallest prime factor of m, but then we may as well have used trial
factorization. Better tests exist.
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Polynomials Mod m

Since we have defined addition and multiplication on congruence classes,
we can also define polynomials on congruence classes.

Example

Let’s evaluate the polynomial 2x3 + 3x (mod 11) at the points [x ] = [2],
[x ] = [3], and [x ] = [13]. Directly substituting yields

2× 23 + 3× 2 ≡ 16 + 6 ≡ 7 (mod 11),

3× 33 + 3× 3 ≡ 81 + 9 ≡ 2 (mod 11),

13× 133 + 3× 13 ≡ 2× 23 + 3× 2 ≡ 7 (mod 11)

This was expected since [2] = [13]
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Polynomials Mod m

Example

The polynomial x2 − 2x − 1 has no integer roots (it has the real roots
1−

√
2 and 1 +

√
2). However, evaluating at [4] and [5] mod 7 yields [0],

so we consider [4] and [5] to be its roots mod 7.

Example

The equation x2 − 1 has roots ±1 in the integers and thus has roots
[1], [−1] mod m for any m. However, it has the additional roots [8] and
[17] mod 21 (check for yourself!). No quadratic equation over the real
numbers has more than two real roots - modular arithmetic changes the
rules of polynomial factorization!
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Polynomials Mod m

Exercise

Find the four roots of the polynomial x4 − 1 mod 5.

Exercise

Find a modulus m such that x2 + 1 has two roots. You can think of these
roots as being square roots of [−1].
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Primality and Polynomials Mod m

Let k be the number of distinct prime factors of m. It is a fact that the
number of roots mod m of x2 − 1 is 2k . In particular, if m is prime, then
k = 1 and the only roots are ±1. We exploit this to obtain a new primality
test.
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Miller-Rabin Test

Express m − 1 = 2st, where t is odd.

Choose an integer a (usually between 2 and n − 1).

If at ≡ 1 (mod m), m is “probably prime”; we are finished.

For each r between 1 and s inclusive, check whether a2
r t ≡ 1

(mod m).

If no such r exists, then in particular am−1 ≡ a2
s t ̸≡ 1 (mod m) and

thus m is composite by Fermat’s Little Theorem; we are finished.

Else, for the first such r , check whether a2
r−1t ≡ −1 (mod m).

If not, then a2
r−1t is an additional root to x2 − 1 mod m; thus m is

composite and we are finished.

Else m is “probably prime”; we are finished.
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Miller-Rabin Test

Example

Let’s run the Miller-Rabin test on the Carmichael number m = 561 with
a = 2. Write m − 1 = 560 = 24 × 35. We calculate as follows:

235 ≡ 263 (mod 561)

270 ≡ 166 (mod 561)

2140 ≡ 67 (mod 561)

2280 ≡ 1 (mod 561)

But this means that [2140] is a root of x2 − 1 which is neither [−1] nor [1].
Therefore 561 is proven composite, as opposed to the Fermat test with
a = 2 which would have suggested “probably prime”.
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Miller-Rabin Test

Like the Fermat test, there are Miller-Rabin pseudoprimes to any base a
(composite m for which the Miller-Rabin test with a returns “probably
prime”). But unlike the Carmichael numbers, at most 1/4 (and usually
significantly fewer) of the integer a between 2 and m − 1 inclusive will fail
to identify composite m. This gives rise to a probabilistic method of
identifying primes.

Example

Fix m and suppose that we choose 10 different bases a between 2 and
m − 1 at random. Suppose also that running Miller-Rabin on all 10 bases
returns “probably prime”. Then we conclude that there is less than a
(1/4)10 ≈ 10−6 chance that m is composite.

Exercise

How many bases must we choose to theoretically have a 99% chance that
m is prime?
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Being Absolutely Sure

How can we use the Miller-Rabin test to prove that a number is prime
with no margin of error? By sophisticated methods, Heath-Brown has
shown that for all composite m past some uncomputed point m0, there is
at least one Miller-Rabin witness for m less than 10

√
m. Assuming the truth

of the Extended Riemann Hypothesis (a famous open conjecture), it was
shown by Bach that there is at least one Miller-Rabin witness for m less
than 2(ln(m))2. Both these bounds are far smaller than the trial factoring
bound

√
m.
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